The fundamental problems are boiled to zero eigenvalue solutions and all their jordan normal form and non - zero eigenvalue solutions 將問題歸結(jié)為零本征值本征解和非零本征值本征解問題。
5 . the solution of this dissertation is different from one of the system of dual vectors in which the solution of zero eigenvalue is corresponding with saint - venant ' s solution 與對(duì)偶向量體系采用零特征的解對(duì)應(yīng)圣維南解不同,本文采用微分算子解法,將2維彈性力學(xué)的解進(jìn)行分解。
Based on the zero eigenvalue solutions and non - zero eigenvalue solutions of the problem of viscoelastic cylinders , as particular example , kelvin model ' s creep and maxwell model ' s stress relaxation are studied for the simple extension . the numerical results show that the model is reasonable , which is in agreement with viscoelastic characteristics 在得到粘彈性柱體問題的零本征值和非零本征值解析解的基礎(chǔ)上,作為特例討論了粘彈性柱體單向拉伸問題的kelvin模型的蠕變現(xiàn)象以及maxwell模型的應(yīng)力松弛現(xiàn)象。
For viscous shock waves c , by the spectral analysis we prove that in l2 ( r ) space the essential spectra and the eigenvalues ( except the simple zero eigenvalue ) of the linearized operator have negative real parts , thus we show that the viscous shock waves c is locally asymptotically exponentially stable in l2 ( r ) space 對(duì)粘性沖擊波c利用類似方法,我們證得在l ~ 2 ( r )空間線性化算子的本質(zhì)譜和除簡(jiǎn)單特征值零以外的特征值均具有負(fù)實(shí)部。于是,我們得到粘性沖擊波c在l ~ 2 ( r )空間的局部漸近指數(shù)穩(wěn)定。
By choosing some appropriate exponential weight functions we prove that the essential spectra and the eigenvalues ( except the simple zero eigenvalue ) have negative real parts , thus we get the locally asymptotically exponential stability of travelling waves ( al ) and ( a2 ) in some weighted spaces 通過(guò)選用合適的權(quán)函數(shù),我們證得在加權(quán)空間線性化算子的本質(zhì)譜和除簡(jiǎn)單特征值零以外的特征值均具有負(fù)實(shí)部。因此,我們得到行波( a1 ) , ( a2 )在加權(quán)的l ~ 2 ( r )空間的局部漸近指數(shù)穩(wěn)定。